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Laminar flow in a curved pipe with varying curvature 
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(Received 6 January 1975) 

The steady laminar motion of fluid through pipes of circular cross-section, the 
curvature of whose centre-line varies locally, is analysed theoretically. The flow 
in three kinds of pipes whose centre-lines are specified by 

rfj = a( I + K ~ @ ) * ,  Q = a tanh ~2 and rfj = a sin ~2 

are treated as the examples of once-, twice- and periodically-curved pipes, respec- 
tively. The analysis is valid for any other two-dimensionally curved pipes, when 
centre-line curvature is small. At very small Reynolds number, the position of 
maximum axial velocity shifts towards the inner side of the pipe section; a t  
large Reynolds number, on the contrary, it tends to the outer side, owing to 
centrifugal force. Furthermore, in the latter case, adaptation of the flow follows 
the change of mean-flow direction, with a phase lag. 

1. Introduction 
Engineering practice requires extensive knowledge of flow in curved pipes; 

and numerous studies have been made of it. In  particular, almost everything is 
known about laminar flow in a toroidally-curved pipe of circular cross-section. 
The Dean number plays a principal role as the similarity parameter in character- 
izing the flow; and the mathematical procedures for sufficiently small Dean 
number are fundamentally different from those for fairly large Dean number. 
In  the latter case, theory is based on the boundary-layer concept (Adler 1934; 
It0 1969). In the former, perturbation calculations on the basis of Poiseuille 
flow are useful (Dean 1927, 1928). Numerical integration of the governing equa- 
tions is adequate in the middle region, where neither procedure is applicable 
(McConalogue & Srivastava 1968; Greenspan 1973). 

The present work deals with the problem of laminar flow in pipes, the curvature 
of whose centre-line varies locally. There exists no theoretical analysis for these 
despite the fact that non-uniformly curved pipes have as much practical use as 
toroidal. Among the different existing approaches, our analysis belongs to the 
category of low Dean number flow analysis, though the Dean number is not the 
exact similarity parameter in this case. 

Three kinds of curved pipes are treated in this work. However, the details will 
be described only for a periodically-curved pipe, since the line of thought is com- 
pletely similar for any other type so long as restrictions imposed in the course 
of analysis are not violated. 
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FIQIJRE 1. Co-ordinate system. (a) Periodically-curved pipe. ( b )  Once-curved. 
(c) TwiCe-cmed. 

2. Analysis 
We consider cases in which the configurations of the centre-line of the curved 

pipes are specified by two-dimensional curves contained in the 2, 9 plane of a 
Cartesian co-ordinate system (a,@, 2). We consider, for instance, the curves 

@ = a sin ~ 2 ,  9 = a( 1 + K~P)*,  9 = a tanh ~ 2 ,  (1143) 

in which a and K are numerical constants. Below we treat these as examples 
of (i) a periodically curved pipe, (ii) a once-curved pipe, and (iii) a twice- 
curved pipe. (See figure 1.) In  the plane perpendicular to the pipe centre-line, 
circular co-ordinates (r,  q5) are defined, and the third co-ordinate axis x is taken 
in the positive mean-flow direction along the tangent to the pipe centre-line. The 
co-ordinates ( r ,  4, x) are a right-handed system, and are always orthogonal 
when the pipe centre-line is a two-dimensional curve. The corresponding 
velocity components of the flow will be denoted by (u, v, w), respectively. In  the 
following, the velocity v of the fluid is non-dimensionalized by W,, the maximum 
velocity in a cross-section of Poiseuille distribution, the static pressure p by 
pWi (density of fluid p),  and lengths by the pipe radius r,. The Reynolds 
number is defined as Re = W,r,/v, where v is kinematic viscosity of the 
fluid. 

It is intended to obtain the flow in the region far from the pipe entrance; the 
influence of the entrance region of the pipe is not taken into account. 
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for the periodically- (equation (1)) and the twice-curved pipe (equation (3)).  
For the once-curved pipe (equation (2)), I?& are the same with opposite sign, except 
for which is just as above. The quantity g,, is different for each kind of pipe, 
and is given below in the sections dealing with them. K, in (8) is the curvature of 
the pipe centre-line. 

2.1. Periodically-curved pipe 

We begin with laminar flow in a sinusoidally-curved pipe. Attached orthogonal 
co-ordinates are related to the rectilinear as follows: 

2 = x-Karcos$cosKx/S, 4j = asinKx+rcos$/S, 5 = rsin$, (9) 

with. 

This yields 

8 = (1 + K2U2 COS2 K X ) + .  

gt3 = S(l +KcrcOs$). 

Putting r = 0, (10) reduces to the relation for the pipe centre-line 

from which is obtained 
y = asinKx, 

K, = K 2 a  sin 1~x1s~.  

Here y represents the 4j co-ordinate of pipe centre-line. 
Now we consider the case of a pipe with small curvature in the manner usual 

in treatises on curved pipes. A regular perturbation technique is applied, to get 
an approximate solution, assuming that the non-dimensional amplitude a of the 
wavy curve of the pipe centre-line is small. v and vi, with components (u, v, w) 
and (ui, vi, wi), respectively, and p are expanded in a series in a: 

v = v, + av, + azv, + . . . , p = p ,  + upl + a2p2 + . . . . (13) 

Then they are substituted in (4)-(7), in which Fik and g3, are also expanded, 
roughly as above. 

The zero-order flow (i.e. that determined by terms of order a,) becomes Poi- 
seuille. So 

where Po is a constant. 

(14) u, = v, = 0, w, = 1 - r2, p ,  = Po - 4x/Re, 

The momentum and continuity equations for the fist-order flow are 
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u1 = v1 = w1 = 0 a t  r = 1. (19) 

The method of separation of variables reduces the partial differential equations 
(15)-(18) to ordinary ones, the solution of which for arbitrary K necessitates 
numerical integration. The behaviour of the solution when K < 1 can be examined 
by assuming a solution of the form 

739 

with the boundary conditions 

V1 = K2Vll + K3V12 + . . , , p1 = K2p11 + K3p12 + . . . . (20) 

Substituting these expansions into ( 16)-( 19), and collecting terms of order ~ 2 ,  

one obtains the governing equations for the flow (vll(ull, vI1, wll),pll). The solu- 
tion for this set is obtained by separat.ion of variables: 

Re 1 d2y 
ull = - - ( 1 - r2)2 (4  - r2)  cos $ - - 

288 K 2 a  dx2 ’ I 
Re 1 d2y 

vll = -( 1 - r2)  (4-  23r2+ 7r4) sin $- - 
288 K2a dx2’ 

) (21) 
1 d2y 

wll = - r( 1 - r2) (Re” (1 9 - 2 lr2 + 9r4 - r6) - Q 
11520 

Here, d2yldx2 is calculated from (1 1). 
In  a like manner, the solution of the flow of order is obtained: 

1 d3y 
(3003 - 3465r2+ 1617r4- 231r6) ++ cos 4- - Re2 

15966720 ) K3CL dx3 ’ u12 = ( 1  - r 2 ) 2  { 
252 = -(1-r2) ( (3003-51744r2+61446r4-28644r6 

15966720 
1 d3y 

+3927r8)+&(2-r2 

( 5 ~ ~ o o  (32659- 48191r2+ 35739r4- 1 4 3 1 1 ~ ~  w12 = --r(1--r2) - Re 
576 

{ Re ~ ( 9 3 3 2 4 -  11088r2+83160r4-27720./6+2772r8) 
’I2 = 15966720 

--(l-3r2)}cos$- 1 1 - d3y 
6Re ~~a dx3 ’ 

The flow of order K~ represents the delay of adaptation of the flow to the ever- 
varying tangential direction of the pipe centre-line, as will be shown later. The 
streamlines of the secondary flow in a cross-section may be calculated by inte- 
grating 

However, these do not always coincide with equi-flow-rate lines, within the order 
considered. 

drlu, = rd$lvl. (23) 

47-2 
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The above-mentioned solution for small K is valid in the region KRe c 1. We 
proceed to consider the solution for arbitrary K,  retaining the form of solution 
in (13). The set of equations (15)-( 19) is expected to have a solution of the form 

I @ = {F,(r) sin KX + F2(r) cos KX} sin #, 
w1 = {G1(r) sin KX + G2(r) cos KX] cos #, 

v1 = - ~ - ~ r ( G , c o s ~ ~ - G ~ s i n ~ ~ ) s i n q 5 .  

The stream function @ satisfies the continuity equation (18), and (16)-( 18) are 
reduced to the following set of ordinary differential equations in the unknown 
functions Fl(r), F2(r), G,(r) and G2(r), introduced in (24): 

tcr FF +r- - + K ~  F;+pF, - ( l + ~ ~ r ~ ) G ; + ( l + 3 ~ ~ r ~ ) -  a; [ ( r t  ) ] [ r 

- (1 + 2 ~ ~ r ~ + ~ ~ ? 9 $  +Re [K2r(l- r2) FA- 2 4 + ~ ( 1  -r2) (1 + K 2 r 2 )  G, 

+ ~ 3 r (  1 - r2)2] = 0, (26) 
" 1  

K r  [ F[ +:- ( : + x 2 )  F; + f F,] + [ (1 + K 2 r 2 )  + (1 + 3tc2r2) - G; 
r 

- 1( 1 + k 2 r 2  + ~ ~ r ~ )  

- ~ ~ r ( 6  + K ~ (  1 - r2)} = 0, 

- Re [ K 2 r (  1 - r2) Fi - ZF! - K( 1 - r2) (1 + ~ ~ r ~ )  G,] 

(26) 

G;"+%- r ( - $ + K ~ )  G;+:($+K~)  G,+;[F;+:- ( A + K ~ )  F2] 

1 + Re 2F; - 1 - r2)  Fl - + K(  1 - r2) Gi - 2uG2 - ~ ~ ( 6  + K ~ (  1 - r2)}  = 0, (27) [ r 

I?; +$- r (-$ + ~ 2 )  G; + :(A + .Z) G, - 5 [ + 7- (f + K,) 41 

K( 1 - r2) G, + 2wG, - K ~ (  1 - r2)2 = 0. (28) 1 F2 2F; - x2( 1 - r2)  - - 
r 

The boundary conditions corresponding to (19) are 

F, = Fi  = 0, F, = Fg = 0, G, = G, = 0 a t  r = 1. (29) 

Numerical integration of (25)-(28) by means of the Runge-Kutta method is 
carried out starting from r = 0, where Fi and Gi (i = 1,Z) are expanded as 

Fi= ailr+ai,r3+ ..., Gi = bilr+bi3r3+ .... ( 30) 

The unknowns are six numerical coefficients ail, ui3 and b, (i = 1,2),  all the 
other coefficients being related to these. The adequate combination of six 
unknowns must be determined, so that F$ and Gi satisfy the condition at the goal 
o r a t r =  1. 
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Now the flow to order a1 is completely described. The effect of centre-line cur- 
vature upon hydraulic loss does not manifest itself, as is evident from (21) and 
(22). For this, one is obliged to study the flow of order a2. Looking for a solution in 
the range a < 1, K < 1, one makes the same sort of manipulations as above, 
though lengthy, and obtains the governing equations for (v2(u2, v2, w2),p2): 

K4[ ull% + + sin Kx (cos $rull e- 2) - sin +vllwo)] + u2 aw, - ar 

1 a(ru2) 1 av, 
r ar raq5 

+ - - + K~ sin KX (COB dull - sin $vll) = 0. -- (34) 

Here terms of order higher than tc4 are neglected. We restrict ourselves to finding 
the change in flow rate in the curved pipe compared with that in the straight 
when the pressure loss between two sections measured along the centre-line of the 
two pipes is equal; other details will not be touched upon. Because 

dxlds = 1 - $K2a2 cos2 KX, 

where s is measured along the centre-line, the above-mentioned condition 

ajqas = apo/as 

- ap2/ax + 4.2 cos2 Kx(ap,/ax) = 0. gives 

Considering that every term in the governing equations for ( v2, p 2 )  contains the 
factor 

sin2 KX sin 9 00s q5 = &sin2 KX sin 2g5, 
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u2 = {I,(r) cos 24  + J ( r ) }  ~4 sin2Kx, 
v2 = 12(r) sin 2 $ ~ 4 s i n ~  K X ,  

w2 = { H l ( r ) c o s 2 $ + H 2 ( r ) } ~ 4 s i n 2 K x  
(35) 

is found to be possible. Of the five unknown functions in (35)) only H2(r) is con- 
cerned with the mean flow rate. It is easily verified that J ( r )  is given by 

J(r )  = - . R e / 5 7 6 ~ ( l - r ~ ) ~ ( 4 - r ~ ) ,  

from (31). This is then substituted into u2 in (33), and finally yields 

12357 19 331 99 56gra 
Re4 -- +-r2 - -r4 + - f l -  __ 

2( ) = 32 x K4 1442 [ ( 67200 20 160 40 320 
H r  

157 33 1 
200 160 35 

+ __ ~ 1 0  - - r12 +- r14 - 

+-r2+ 126r4- 
2664 378 

+Re2(-= 5 

-;z(3-14r2+1ir4) . 1 
The mean flow rate is 

(36) 

r{( 1 - r2)  + + ~ ~ a ~ H , ( r ) }  dr = n 

in non-dimensional form, or, expressed as a ratio to that for a straight pipe 
F8 = in, it  becomes 

2.2. Once-curved pipe 

The pipe centre-line is assumed to have the configuration 

Correspondingly, the curvature is 
'lJ = a( 1 + K2X2)+. (39) 

(40) K, = K2a/ { (  1 + fc2x2)% S3}, where 8 = { 1 + @a2z2/( 1 + tc2x2))4. 

The curvilinear co-ordinates ( r ,  $, x) attached to this pipe are related to the 
rectilinear by 

K2axr cos 4 rcosq5 9 = a( 1 + K2X2)l t  + - 
(1 + K z X 2 ) 4 s '  s 7  x = rsinq5. (41) 8 = X -  

From (41) we obtain 
9i3 = s(1 -KcrCOS$). 

As in $2.1, a regular perturbation solution with perturbation parameter K < 1, 

V = Vo+K2V*l+K3V*2+. . . ,  p = po+K2pel+K3p*2+. . . ,  (43) 

is to be looked for. The zero-order solution is, as expected, the Poiseuille flow. 
A lengthy calculation shows that the governing equations for the first-order flow 
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(i.e. that of order ~ 2 )  are the same as those for the sinusoidally-curved pipe with 
modifications avll to v*l and upl1 to respectively, except for the equation 
of motion for the x component. The discrepancy in this equation of motion is due 
to bhe difference in the expansion: i.e. in the present problem the velocity v is 
expanded in a single series as 

V = V 0 +  cK"+lV*n,  
n 

but in the problem discussed in $ 2.1 it was expanded in a double series as 

v = vo + C am C nnflv,,,, 

and it affects only the static pressure. A solution of the above-mentioned 
system of equations can be obtained just as before. The velocity v*l is given by 
(21), with modification of avll to v*~. The corresponding static pressure p*l is 

m n  

p*l = 
12 

Flow of order K~ is easily shown to be subject to the equations of $2.1, with re- 
placement of av12 by v * ~  and aplz by p*2. The resulting velocity and pressure 
are given by (22), with the same replacements. The secondary flow streamlines are 
calculated by integrating (23) using these velocities. 

2.3. Twice-curved pipe 
The centre-line and its curvature are assumed to be 

y = atanhtcx, K, = 2 ~ ~ a s e c h ~ ~ x t a n h ~ x / S ~ ,  (45L (46) 

respectively, where S = ( 1 + K2a2  sech4 K X ) ~ .  

The curvilinear co-ordinates ( r ,  $, x) belonging to this pipe are related to the 
rectilinear by 

rcos' 2=rs in$ ,  (47) 4 j  = atanhKx+ - 
S '  

and gi3 = S(l+Kcrcos$). (48) 

sech2 K X  
2 = x-tcarcos$- 

8 '  

Manipulations are carried out analogous to those of $2.2. The regular perturba- 
tion, with K assumed to be sufficiently small, yields Poiseuille flow at zero order. 
The velocity is exactly the same as that in $2.2, and the static pressure becomes 

r 1 d2y 4a2 
12 ~ ~ d x ~  3 ~ R e  

p*l = -- (3 - 6r2 + 2r4) cos$ - - - - t anhm (1 + isech2Kx). (49) 

Furthermore, the second-order flow is identical with that in $2.3. 

3. Numerical examples 
3.1. Periodically-curved pipe 

Numerical computations are given below. In  them the flow is calculated from 
(21) and (22) in the range K R e  < 1, and by integrating (25)-(28) for fairly large 
values of K R e .  The resdlts of these two procedures agree well, even when K R e  
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K X =  

360" 

011 

0 

5 
s . 

V 
FIGURE 2. Distribution of deviation of axial velocity from that of Poiseuille flow. 

K = 0.01, sin g5 = 0. (a) Re = 1. (b) Re = 1000. 

approaches 1. This is to be expected, becauselv,,l > IKv12) there, as is evident 
from (21) and (22). 

Figure 2 shows the distribution of deviation of axial velocity from that of Poi- 
seuille flow in succeeding sections of the pipe. Figures 2 (a )  and (b )  are respectively 
for Re = 1 and 1000. The pipe waving is exaggerated in the figure, to aid under- 
standing. When the Reynolds number is small, the fluid flows more in the inner 
part, which is nearer to the centre of the curvature, than in the outer portion of 
the pipe section. Consequently, the averaged flow path becomes ehorter than 
the length measured along the centre-line. Hence the flow rate becomes larger 
than in the straight pipe when the same pressure drop between two sections, 
the same developed distance apart, is assumed. The last term in (38) represents 
this effect. In  the case of a toroidal pipe, with of course constant centre-line 
curvature, this phenomenon also appears, as pointed out by Larrain & Bonilla 
(1970). It may be attributed to the general rule that viscous fluid flows so as to  
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FIGURE 3. Effect of Reynolds number upon the deviation of axial velocity. K = 0.01, 
KT = goo, sin r$ = 0. Re: ___ 1. - - -, 10; - - - -, 100; - - - -, 1000. > ,  

make viscous dissipation minimum if the flow is so slow that inertia terms in 
the momentum equation are negligible (It0 1951). 

As the Reynolds number increases, the effect of the centrifugal force due to 
the curving of the pipe becomes pronounced; and at Re = 1000 it is the pre- 
dominant cause of secondary flow (figure 3). Correspondingly, fluid flows more 
in the outer portion of pipe section then; and, at the same time, the adaptation of 
the axial flow distribution to the change in curvature of the centre-line is delayed. 
In  figure 2 ( b ) ,  at KX = 0", where the curvature vanishes, the axial velocity dis- 
tribution is still that of upstream sections, where the centrifugal force acts 
leftwards (in the figure); and, at about KX = 30", w, or the deviation from 
Poiseuille flow due to the pipe curvature vanishes. Furthermore, the maximum 
w1 occurs a t  about KX = 120, not 90°, which means that, in this pipe, the effect of 
curvature appears in the downstream section, delayed by about KX = 30'. 

Figure 4 shows the variation of flow for different K ,  the wavenumber of the 
sinusoidally-curved pipe centre-line. Figure 4(a)  is for Re = 1. The flow pattern 
is almost independent of K when K < 1 ; and, as K increases, the effect of curvature 
is more and more accentuated in the region nearer the wall, as suggested by the 
graph for K = 10.0. Figure 4 ( b )  is for Re = 100. The delay of adaptation offlow to 
curvature is more remarkable as the Reynolds number increases; and when 
K = 1.0, even at  KX = go", where curvature is maximum, w1 is larger in the region 
nearer the inner wall. In  this section, the delay of adaptation amounts to about 
165", and the maximum w1 is at about KX = 150", as is seen in figure 4(c). 

Figure 5 shows the secondary flow streamlines obtained by integrating (23). 
The rate of the secondary flow in a section, between two neighbouring streamlines 
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FIGURE 4. Effect of K upon deviation of axial velocity. K X  = 90°, sin $ = 0.  (a) Re = 1. 
Ordinate is to be r e d  multiplying by factor 0-1 when K = 10.0. (6) Re = 100. (c)  Distribu- 
tion of deviation of axial velocity when Re = 100.0, K = 1.0. 

0.1 1.0 10.0 i:; 0.01 0.1 1.0 
__ --- ----- 

obtained in this way, cannot be constant along them. The continuity equation 
(18) shows that the divergence of the secondary flow does not vanish everywhere 
in the section. Hence, the computed streamlines do not always coincide with 
equi-flow-rate lines, and only in the section where cos KX = 0 do these lines coin- 
cide when the flow to order K~ is taken into account. Figure 5 (a )  is the flow in 
the section KX = go", and the lines are also the equi-flow-rate lines, which can 
correspondingly be compared directly with those shown in Dean (1927). Figure 
5 (b)  is drawn for the section KX = 0". For both (a)  and (b ) ,  the flow rate between 
two neighbouring streamlines is the same on the line OA. 

Figure 6 shows the distribution of circumferential velocity on the line OA of 
figure 5. Figure 6 ( a )  is for various Reynolds numbers; and ( b )  is for various values 
of K. When either the Reynolds number or K is small, the secondary flow is deter- 
mined locally, and the continuity condition is satisfied two-dimensionally in terms 
of u and v. In  this type of curved pipe, an unusual secondary flow pattern with 
multi-region or non-circulatory streamlines appears because of non-homogeneity 
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0 
FIGURE 5. Secondary flpw streamlines. Re = 100, K = 0.01. (a) KX = 90": (i) q/rc2aRe = 
0.0946 x (ii) 0.1892, (iii) 0.2838, (iv) 0.3784. Also lines of equal flow rate. (b) KZ = 0". 

in speed of adaptation of the secondary flow to curvature. The a,xial extent of its 
appearance depends on K and Re, and is determined by looking for the sections 
that satisfy 

v1 = 0 at r = 0 and a v , p  = 0 at r = 1. 

This unusual pattern falls in one of two categories depending on K. When K Q 1, 
the secondary flow shows no closed streamline. When K becomes large, the 
secondary flow streamlines become doubly-centred, and rotate counterwise 
about one another in an upper/lower half-section. 

The typical features of these two cases are shown in figure 7, by means of the 
vl distribution. Figure 7(a )  is for K < 1 (i.e. K = 0.01 and Re = 1000). The usual 
flow pattern is missing in the section between KX = 7-72 and 10.23". Figure 7 ( b )  
is for fairly large K (i.e. K = 1.0 and Re = 100). The multi-region secondary flow 
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1 .O 

-0.01 0 0.01 
v , / K ~  Re 

-0.01 0 0.01 
v# Re 

FIGURE 6 .  Distribution of circumferential velocity. KZ = go", q5 = 90". (a) Effects of Re, 
K = 0.01. ( b )  Effect of K ,  Re = 100. 

(a) Re B 100 = 1000 = 2000 
( b )  K 0.01 0.1 1.0 

___ - - - - - - - - 

appears in the section KX = 39.48-75-35". In this case also, the secondary flow 
streamlines do not coincide with equi-flow-rate lines. These unusual secondary 
flow patterns have also been reported for unsteady flow in a toroidal pipe (Lyne 
1970), and in a rotating curved pipe (It0 & Motai 1974). 

3.2. Once-curved pipe 
I n  the case of $3.1 it  is possible to calculate the flow for any value of K ,  so long as 
a is sufficiently small. However, in the present case, the alternative way of 
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1 .o 

r 0.5 

n 

I *o 

r 0.5 

0 
-5  x 10-3 0 5 x 10-3 

V l / K s  Re 

FIQURE 7. Circumferential velocity distribution near the region of inversion of secondary 
flow direction. (a) K = 0.01, Re = 1000. (b )  K = 1.0, Re = 100. 

3.0 7.7 9.0 10.2 14.0 
Kx (deg) { 30.0 39.5 60.0 75.3 90.0 

- - _ _ _  --- - --_-  

obtaining a solution for arbitrary K by (24)-(30) is impossible, and the solution is 
severely restricted in the range KRe 4 1. Figure 8 shows the deviation of the 
axial flow w, from Poiseuille. Figure 8 ( a )  is for Re = 1, ( b )  for Re = 100. Pheno- 
mena analogous to those in a sinusoidally-curved pipe are obtained. The short 
path is chosen in the curved region when the Reynolds number is small; and 
increase in the latter makes the effect of the centrifugal force predominant. 
This results in the positive ws in the outer part of the pipe section. 

The secondary flow streamlines computed by means of (38) coincide with equi- 
flow-rate lines when KX = 0;  and are identical with those shown in figure 5 (a) with 
the flow direction reversed. The secondary flow streamlines in other sections are 
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2.5 

1 .o 
0.5 

0 

-0.5 

- 1.0 

- 2.5 

FIGURE 8. Distribution of W ~ . K  = 0.01, sin $ = 0. (a) Re = 1. (b )  Re = 100. 

not much different from those of figure 5 ( a )  in the range computed, since the 
variation in centre-line curvature is vanishingly slow. In  this type of pipe, the 
secondary flow fades out some distance from the curved region, and the flow 
returns to the Poiseuille regime. One mag get an idea, of the axial extent of 
the region where secondary flow exists by considering u, = u/K2aRe, the radial 
velocity component of secondary flow a t  r = 0. The sections where the ratio of 
the absolute value Iucl at that section to its maximum luClmax becomes 0.01 are at 
K X  = 4.54 for Re = 1 ,  and K X  = 4.55 for Re = 100, when K = 0.01. In  this example, 
secondary flow exists in a region about 450 times the pipe radius from the section 
of maximum curvature. This large value is partly because the variation in centre- 
line curvature is very small. 

3.3 .  Twice-curved pipe 

The flow pattern is completely analogous to that in ss3.1 and 3.2. Only one 
example, showing the axial velocity distribution, is given in figure 9. The pheno- 
mena that characterize the flow depending on the Reynolds number and K are 
explained just as above. In  this type of pipe, too, there appears the unusual 
secondary flow pattern that appeared in the periodically-curved pipe, because 
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FIWRE 9. Distribution of W,.K = 0.1, sin q5 = 0. (a) Re = 1. ( b )  Re = 100. 

the sense of centre-line curvature is not unique. The character of the secondary 
flow in that case is just as before, within the scope of this analysis, which is 
restricted to K < 1. The sections in which the secondary flow fade out are, when 
the criterion of $3.2 is applied, KX = 3.58 for Re = 1 and KX = 3.39 for Re = 100 
when K = 0.01. This means that the secondary flow exists in the region about 
350 pipe radii from the inflexion point of the centre-line, and is shorter than for 
the once-curved pipe. The reason is that inversion of centre-line curvature 
produces the counter-rotating secondary flow downstream of the inflexion 
section. 

4. Conclusions 
A regular perturbation analysis of the laminar flow through pipes of circular 

cross-section, with the restriction that centre-line curvature is fairly small, 
revealed the following. At sufficiently small Reynolds number, axial flow is 
shifted to the inner part of a section. At high Reynolds number, on the contrary, 
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it  is shifted to the outer region, the mechanism generating the secondary flow 
being fundamentally different. In  the low Reynolds number range, the flow 
pattern is determined by the local condition, so as to make energy dissipation 
minimum. At high Reynolds number, the flow regime in a section reflects the 
history of the pipe curvature. The adaptation of flow to curvature is more and 
more delayed as the Reynolds number increases. The delay also increases with 
wavenumber, in the case of a sinusoidally-curved pipe. 

The authors wish to express their thanks to Professor H.Ito of Tohoku 
University, Sendai, Japan, for his helpful suggestions in the course of discussion 
of the calculated results. 
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